算法:用kd树的最近邻搜索

本文阅读 3 分钟
首页 知识库 正文

输入:已构造的kd树:目标点;

输出:的最近邻

(1)在kd树中找出包含目标点的叶节点:从根节点出发,递归地向下访问kd树。若目标点当前维的坐标小于切分点的坐标,则移动到左子节点,否则移动到右子节点。直到子节点为叶节点为止。

(2)以此叶节点为“当前最近点”。

(3)递归地向上回退,在每个节点进行以下操作:

​ (a)如果该节点保存的实例点比当前最近点距离目标点更近,则以该实例点作为“当前最近点”

​ (b)当前最近点一定存在于该节点一个子节点对应的区域。检查该子节点的父节点的另一子节点(兄弟节点)对应区域是否有更近的点。具体地,检查另一子节点对应的区域是否与以目标点为球心、以目标点与“当前最近点”间的距离为半径的超球体相交。

​ 如果相交,可能在另一个子节点对应的区域内存在距目标点更近的点,移动到另一个子节点。接着递归地进行最近邻搜索;

​ 如果不相交,向上回退

(4)当回退到根节点时,搜索结束。最后的“当前最近点”即为的最近邻点。

如果实例点是随机分布的,kd树搜索的平均计算复杂度是2022-07-11T02:07:03.webp ,这里 是训练实例数。kd树更适用与训练实例数远大于空间维数时的k近邻搜索。当空间维数接近训练实例数时,它的效率会迅速下降,几乎接近线性扫描。

解压密码: detechn或detechn.com

免责声明

本站所有资源出自互联网收集整理,本站不参与制作,如果侵犯了您的合法权益,请联系本站我们会及时删除。

本站发布资源来源于互联网,可能存在水印或者引流等信息,请用户自行鉴别,做一个有主见和判断力的用户。

本站资源仅供研究、学习交流之用,若使用商业用途,请购买正版授权,否则产生的一切后果将由下载用户自行承担。

介绍一下Kd树?如何建树,以及如何搜索最近节点?
« 上一篇 07-11
Xgboost和GBDT有什么异同?
下一篇 » 07-11

发表评论