介绍一下Kd树?如何建树,以及如何搜索最近节点?

本文阅读 3 分钟
首页 知识库 正文

kd树是一种对k维空间中的实例点进行存储,以便对其进行快速检索的树形数据结构。kd树是二叉树,表示对k维空间的一个划分。构造kd树相当于不断地用垂直于坐标轴的超平面将k维空间切分,构成一系列的k维超矩形区域。kd树的每个节点对应于一个k维超矩形区域。

构造平衡kd树过程:

输入:k维空间数据集

Missing or unrecognized delimiter for \left

$T=\left{x_{1}, x_{2}, \cdots, x_{N}\right}$

输出:kd树

(1)开始:构造根节点,根节点对应于包含T的k维空间的超矩形区域

​ 选择 为坐标轴,以T中所有实例的 坐标的中位数为切分点,将根节点对应的超矩形区域且分为两个子区域。切分由通过切分点并与坐标轴 垂直的超平面实现。

​ 由根节点生成深度为1的左、右子节点:左子节点对应坐标 小于切分点的子区域,右子节点对应于坐标 大于切分点的子区域。

​ 将落在切分超平面上的实例点保存在根节点。

(2)重复:对深度为 的节点,选择 为切分的坐标轴,,以该节点的区域中所有实例的 坐标的中位数为切分点,将该节点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴 垂直的超平面实现。

​ 由该节点生成深度为 的左、右子节点:左子节点对应坐标 小于切分点的子区域,右子节点对应坐标大于切分点的子区域。

​ 将落在切分超平面上的实例点保存在根节点。

解压密码: detechn或detechn.com

免责声明

本站所有资源出自互联网收集整理,本站不参与制作,如果侵犯了您的合法权益,请联系本站我们会及时删除。

本站发布资源来源于互联网,可能存在水印或者引流等信息,请用户自行鉴别,做一个有主见和判断力的用户。

本站资源仅供研究、学习交流之用,若使用商业用途,请购买正版授权,否则产生的一切后果将由下载用户自行承担。

如何理解笛卡尔积、外积、内积?
« 上一篇 07-11
算法:用kd树的最近邻搜索
下一篇 » 07-11

发表评论

惪特博客
  • 文章总数:
    18474 篇
  • 评论总数:
    53211 条
  • 标签总数:
    8841 个
  • 总浏览量:
    20529214 次
  • 最后更新:
    12月7日

最多点赞

随便看看

标签TAG