深度学习与PyTorch入门实战教程
PyTorch是深度学习的主流框架之一,新手入门相对容易。
课程将算法、模型和基础理论知识进行有机结合,结合多个不同的CV与NLP实战项目,
帮助大家掌握PyTorch框架的基础知识和使用方法,带大家较平稳地入门深度学习领域。
目录
目录:/深度学习 Pytorch [3.7G]
┣━━1.深度学习框架介绍 [48.7M]
┃ ┗━━1.lesson1-PyTorch介绍.mp4 [48.7M]
┣━━2.开发环境准备 [54.5M]
┃ ┗━━2.lesson2-开发环境准备.mp4 [54.5M]
┣━━3.初见深度学习 [208.6M]
┃ ┣━━3.lesson3-初探Linear Regression案例-1.mp4 [71.9M]
┃ ┣━━4.lesson3-初探Linear Regression案例-2.mp4 [43.1M]
┃ ┣━━5.lesson4-PyTorch求解Linear Regression案例.mp4 [35.7M]
┃ ┣━━6.lesson5 -手写数字问题引入1.mp4 [36.7M]
┃ ┗━━7.lesson5 -手写数字问题引入2.mp4 [21M]
┣━━4.Pytorch张量操作 [426.4M]
┃ ┣━━8.lesson6 基本数据类型1.mp4 [54.4M]
┃ ┣━━9.lesson6 基本数据类型2.mp4 [28.2M]
┃ ┣━━10.lesson7 创建Tensor 1.mp4 [51.6M]
┃ ┣━━11.lesson7 创建Tensor 2.mp4 [44.3M]
┃ ┣━━12.lesson8 索引与切片1.mp4 [47.2M]
┃ ┣━━13.lesson8 索引与切片2.mp4 [45.4M]
┃ ┣━━14.lesson9 维度变换1.mp4 [33.1M]
┃ ┣━━15.lesson9 维度变换2.mp4 [40.7M]
┃ ┣━━16.lesson9 维度变换3.mp4 [40.8M]
┃ ┗━━17.lesson9 维度变换4.mp4 [40.8M]
┣━━5.张量高阶操作 [405.3M]
┃ ┣━━18.lesson10 Broatcasting 1.mp4 [57.9M]
┃ ┣━━19.lesson10 Broatcasting 2.mp4 [46.2M]
┃ ┣━━20.lesson11 合并与切割1.mp4 [46.8M]
┃ ┣━━21.lesson11 合并与切割2.mp4 [30.8M]
┃ ┣━━22.lesson12 基本运算.mp4 [67.1M]
┃ ┣━━23.lesson13 数据统计1.mp4 [39.9M]
┃ ┣━━24.lesson13 数据统计2.mp4 [54.7M]
┃ ┗━━25.lesson14 高阶OP.mp4 [61.9M]
┣━━6.随机梯度下降 [286.1M]
┃ ┣━━26.lesson16 什么是梯度1.mp4 [69.2M]
┃ ┣━━27.lesson16 什么是梯度2.mp4 [43.3M]
┃ ┣━━28.lesson17 常见梯度.mp4 [18.4M]
┃ ┣━━29.lesson18 激活函数及其梯度1.mp4 [45.5M]
┃ ┣━━30.lesson18 激活函数及其梯度2.mp4 [44.4M]
┃ ┗━━31.lesson18 激活函数及其梯度3.mp4 [65.3M]
┣━━7.感知机梯度传播推导 [258.3M]
┃ ┣━━32.lesson19 单一输出感知机1.mp4 [47.4M]
┃ ┣━━33.lesson19 多输出Loss层2.mp4 [49.7M]
┃ ┣━━34.lesson20 链式法则.mp4 [39.9M]
┃ ┣━━35.lesson21 反向传播.mp4 [82M]
┃ ┗━━36.lesson22 优化小实例.mp4 [39.2M]
┣━━8.多层感知机与分类器 [353.9M]
┃ ┣━━37.lesson24 Logistic Regression.mp4 [47.8M]
┃ ┣━━38.lesson25 交叉熵.mp4 [72.8M]
┃ ┣━━39.lesson26 多分类实战.mp4 [35M]
┃ ┣━━40.lesson27 全连接层.mp4 [52.1M]
┃ ┣━━41.lesson28 激活函数与GPU加速.mp4 [39.6M]
┃ ┣━━42.lesson29 测试.mp4 [53.8M]
┃ ┗━━43.lesson30-Visdom可视化.mp4 [52.8M]
┣━━9.过拟合 [262.5M]
┃ ┣━━44.lesson31-过拟合与欠拟合.mp4 [42.5M]
┃ ┣━━45.lesson32-Train-Val-Test-交叉验证-1.mp4 [45.9M]
┃ ┣━━46.lesson32-Train-Val-Test-交叉验证-2.mp4 [32.3M]
┃ ┣━━47.lesson33-regularization.mp4 [39M]
┃ ┣━━48.lesson34-动量与lr衰减.mp4 [51.5M]
┃ ┗━━49.lesson35-early stopping, dropout, sgd.mp4 [51.2M]
┣━━10.卷积神经网络CNN [678.5M]
┃ ┣━━50.lesson37-什么是卷积-1.mp4 [62.8M]
┃ ┣━━51.lesson37-什么是卷积-2.mp4 [39.6M]
┃ ┣━━52.lesson38-卷积神经网络-1.mp4 [41.4M]
┃ ┣━━53.lesson38-卷积神经网络-2.mp4 [62.9M]
┃ ┣━━54.lesson38-卷积神经网络-3.mp4 [35.5M]
┃ ┣━━55.lesson39-Pooling&upsample.mp4 [34.1M]
┃ ┣━━56.lesson40-BatchNorm-1.mp4 [41.4M]
┃ ┣━━57.lesson40-BatchNorm-2.mp4 [51.3M]
┃ ┣━━58.lesson41-LeNet5,AlexNet, VGG, GoogLeN.mp4 [49.3M]
┃ ┣━━59.lesson41-LeNet5,AlexNet, VGG, GoogLeN.mp4 [40.4M]
┃ ┣━━60.lesson42-ResNet,DenseNet-1.mp4 [53.2M]
┃ ┣━━61.lesson42-ResNet, DenseNet-2.mp4 [43.6M]
┃ ┣━━62.lesson43-nn.Module-1.mp4 [45M]
┃ ┣━━63.lesson43-nn.Module-2.mp4 [31.4M]
┃ ┗━━64.lesson44-数据增强Data Argumentation.mp4 [46.8M]
┣━━11.CIFAR10与ResNet实战 [0B]
┣━━12.循环神经网络RNN&LSTM [465M]
┃ ┣━━65.lesson46-时间序列表示.mp4 [53.5M]
┃ ┣━━66.lesson47-RNN原理-1.mp4 [28.4M]
┃ ┣━━67.lesson47-RNN原理-2.mp4 [34.9M]
┃ ┣━━68.lesson48-RNN Layer使用-1.mp4 [34.2M]
┃ ┣━━69.lesson48-RNN Layer使用-2.mp4 [29.9M]
┃ ┣━━70.lesson49-时间序列预测.mp4 [53.3M]
┃ ┣━━71.lesson50-RNN训练难题.mp4 [55M]
┃ ┣━━72.lesson51-LSTM原理-1.mp4 [33M]
┃ ┣━━73.lesson51-LSTM原理-2.mp4 [45.7M]
┃ ┣━━74.lesson52-LSTM Layer使用.mp4 [28.4M]
┃ ┗━━75.lesson53-情感分类实战.mp4 [68.6M]
┗━━13.对抗生成网络GAN [316.2M]
┣━━76.lesson54-数据分布.mp4 [17.4M]
┣━━77.lesson55-画家的成长历程.mp4 [28.9M]
┣━━78.lesson56-GAN发展.mp4 [23M]
┣━━79.lesson57-纳什均衡-D.mp4 [20.4M]
┣━━80.lesson58-纳什均衡-G.mp4 [36.6M]
┣━━81.lesson59-JS散度的弊端.mp4 [36.8M]
┣━━82.lesson60-EM距离.mp4 [17.2M]
┣━━83.lesson61-WGAN与WGAN-GP.mp4 [28.8M]
┣━━84.lesson62-G和D实现.mp4 [17.3M]
┣━━85.lesson63-GAN实战.mp4 [33.3M]
┣━━86.lesson64-GAN训练不稳定.mp4 [20.2M]
┗━━87.lesson65-WGAN-GP实战.mp4 [36.3M]
非常抱歉,由于版权问题,无法提供任何电子书籍的下载资源。
请您通过正规的渠道购买或借阅电子书籍,以支持作者和版权持有者的权益。
解压密码: detechn或detechn.com
免责声明
本站所有资源出自互联网收集整理,本站不参与制作,如果侵犯了您的合法权益,请联系本站我们会及时删除。
本站发布资源来源于互联网,可能存在水印或者引流等信息,请用户自行鉴别,做一个有主见和判断力的用户。
本站资源仅供研究、学习交流之用,若使用商业用途,请购买正版授权,否则产生的一切后果将由下载用户自行承担。
感谢分享
升入学习
感谢分享
感谢分享
分享是一种美德!谢谢!
希望免费
感谢分享
牛哇
看看先!!!
不过要CUDA为前提呢
内卷越来越严重了