Python实现逻辑斯蒂回归
使用Python实现Logistic回归,代码思路来源于机器学习实战,改正了原代码中的一些在Python3.5上运行存在的bug。对随机梯度上升法进行了简单的修改。
- from math import exp
- from numpy import *
-
- def loadDataSet():
- dataMat = []; labelMat = []
- fr = open('testSet.txt')
- for line in fr.readlines():
- lineArr = line.strip().split()
- dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
- labelMat.append(int(lineArr[2]))
- return dataMat, labelMat
-
- def sigmoid(inX):
- return 1/(1+exp(-inX))
-
- def gradAscent(dataMatIn, classLabels):
- dataMatrix = mat(dataMatIn)
- labelMat = mat(classLabels).transpose()
- m, n = shape(dataMatrix)
- alpha = 0.001
- maxCycles = 500
- weights = ones((n, 1))
- for k in range(maxCycles):
- h = sigmoid(dataMatrix*weights)
- error = (labelMat - h)
- weights += alpha * dataMatrix.transpose() * error
- return weights
-
- def stocGradAscent0(dataMatrix, classLabels):
- m, n = shape(dataMatrix)
- alpha = 0.01
- weights = ones(n)
- for i in range(m):
- h = sigmoid(sum(dataMatrix[i]*weights))
- error = classLabels[i] - h
- weights = weights + alpha * error * dataMatrix[i]
- return weights
-
- def stocGradAscent1(dataMatrix, classLabels, numIter=150):
- m, n = shape(dataMatrix)
- weights = ones(n)
- for i in range(numIter):
- dataIndex = len(list(range(m)))
- for j in range(m):
- alpha = 4/(1.0+i+j)+0.01
- randIndex = int(random.uniform(0, dataIndex))
- h = sigmoid(sum(dataMatrix[randIndex]*weights))
- error = classLabels[randIndex] - h
- weights = weights + alpha * error * dataMatrix[randIndex]
- dataIndex -= 1
- return weights
-
- def plotBestFit(weights):
- import matplotlib.pyplot as plt
- dataMat,labelMat=loadDataSet()
- dataArr = array(dataMat)
- n = shape(dataArr)[0]
- xcord1 = []; ycord1 = []
- xcord2 = []; ycord2 = []
- for i in range(n):
- if int(labelMat[i])== 1:
- xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
- else:
- xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
- fig = plt.figure()
- ax = fig.add_subplot(111)
- ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
- ax.scatter(xcord2, ycord2, s=30, c='green')
- if weights is not None:
- x = arange(-3.0, 3.0, 0.1)
- y = (-weights[0]-weights[1]*x)/weights[2] #令w0*x0 + w1*x1 + w2*x2 = 0,其中x0=1,解出x1和x2的关系
- ax.plot(x, y) #一个作为X一个作为Y,画出直线
- plt.xlabel('X1'); plt.ylabel('X2');
- plt.show()
-
- def classifyVector(inX, weights):
- prob = sigmoid(sum(inX*weights))
- if prob > 0.5: return 1.0
- else: return 0.0
-
- def colicTest():
- frTrain = open('horseColicTraining.txt')
- frTest = open('horseColicTest.txt')
- trainingSet = []; trainingLabels = []
- for line in frTrain.readlines():
- currLine = line.strip().split('\t')
- lineArr = []
- for i in range(21):
- lineArr.append(float(currLine[i]))
- trainingSet.append(lineArr)
- trainingLabels.append(float(currLine[21]))
- trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 500)
- errorCount = 0; numTestVec = 0.0
- for line in frTest.readlines():
- numTestVec += 1.0
- currLine = line.strip().split('\t')
- lineArr = []
- for i in range(21):
- lineArr.append(float(currLine[i]))
- if int(classifyVector(array(lineArr), trainWeights)) != int(currLine[21]):
- errorCount += 1
- errorRate = float(errorCount)/numTestVec
- print("the error rate of this test is: %f" % errorRate)
- return errorRate
-
- def multiTest():
- numTests = 10; errorSum = 0.0
- for k in range(numTests):
- errorSum += colicTest()
- print("after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests)))
-
- dataArr, labelMat = loadDataSet()
- weights = stocGradAscent1(array(dataArr), labelMat)
- multiTest()
解压密码: detechn或detechn.com
免责声明
本站所有资源出自互联网收集整理,本站不参与制作,如果侵犯了您的合法权益,请联系本站我们会及时删除。
本站发布资源来源于互联网,可能存在水印或者引流等信息,请用户自行鉴别,做一个有主见和判断力的用户。
本站资源仅供研究、学习交流之用,若使用商业用途,请购买正版授权,否则产生的一切后果将由下载用户自行承担。