Python树中两个节点的最低公共祖先
首先来看比较简单的情况--二叉搜索树的最低公共祖先,对于二叉搜索树而言,每个节点的左子节点都小于这个数,右子节点都大于这个数,因此,我们比较当前节点和需要比较的结点m,n的大小,如果当前节点的值均大于m,n,则在当前节点的左子树继续操作,如果当前节点均小于m,n,则在当前节点的右子树继续操作,反之,则当前结点是最小公共祖先。而对于普通的二叉树而言,我们如果希望找到两个结点的最低公共祖先,那么我们可以先从树的根节点开始,找到根节点到结点m和结点n的路径,这时候我们就有两个List或者两个链表,然后就像前面题中遇到的寻找两个链表的公共结点一样,从后往前遍历两个List找到最靠后的第一个公共结点即可。
# 二叉树的最低公共祖先
"""
Definition of TreeNode:
"""
class TreeNode:
def __init__(self, val):
self.val = val
self.left, self.right = None, None
class Solution:
"""
@param root: The root of the binary search tree.
@param A and B: two nodes in a Binary.
@return: Return the least common ancestor(LCA) of the two nodes.
"""
def lowestCommonAncestor(self, root, A, B):
# write your code here
if root == None:
return False
pathA = self.storeNodes(root, A)[0]
pathB = self.storeNodes(root, B)[0]
if pathA and pathB:
lenA, lenB = len(pathA), len(pathB)
diff = abs(lenA - lenB)
if lenA > lenB:
markA = lenA - diff - 1
markB = lenB - 1
else:
markA = lenA - 1
markB = lenB - diff - 1
while markA >= 0 and markB >= 0:
if pathA[markA] == pathB[markB]:
return pathA[markA]
markA -= 1
markB -= 1
def storeNodes(self, root, targetNode):
if root == None or targetNode == None:
return []
elif root.val == targetNode.val:
return [[targetNode]]
stack = []
if root.left:
stackLeft = self.storeNodes(root.left, targetNode)
for i in stackLeft:
i.insert(0, root)
stack.append(i)
if root.right:
stackRight = self.storeNodes(root.right, targetNode)
for i in stackRight:
i.insert(0, root)
stack.append(i)
return stack
当前页面是本站的「Google AMP」版。查看和发表评论请点击:完整版 »